STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject Nuclear Power Engineering	- 1	Code 010312421010315644	
Field of study Power Engineering	Profile of study (general academic, practical) (brak)	Year /Semester	
Elective path/specialty Sustainable Energy Development Polish		Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)		
Second-cycle studies	full-time		
No. of hours Lecture: 15 Classes: - Laboratory: - Status of the course in the study program (Basic, major, other)	Project/seminars:	No. of credits	
(brak)	brak)		
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences	1 100%		
Technical sciences		1 100%	
Responsible for subject / lecturer:		I	

dr inż. Radosław Szczerbowski

email: radoslaw.szczerbowski@put.poznan.pl

tel. 61 665 20 30 Elektryczny

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Knowledge of power generation technologies: energy conversion, conversion efficiency, and the cycle of transformations and thermodynamic cycles.		
2	Skills	Understand the basic principles of operation of the machines and know the basic construction of conventional energy devices.		
3	Social competencies	Is aware of the need to expand their skills and willingness to work together as a team.		

Assumptions and objectives of the course:

Understanding the basic types of nuclear reactors. Getting to know their structure, concept and thermal systems. Nuclear security issues. Understanding the trends and development in the field of nuclear energy.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Understand nature of developments in a nuclear reactor and process implemented in nuclear power plants, understands the impact of energy conversion processes occurring in nuclear power plants on the environment [K_W03++]
- 2. Student has the knowledge to analyze the technological systems of nuclear power plants and can evaluate the importance the safety of nuclear power plants [[K_W12++]]

Skills:

1. Can integrate knowledge in the field of electrical engineering, electronics, computing, control, and other disciplines to assess the role, tasks and other non-technical aspects (including economic and legal) nuclear power plants in the power system. - [[K_U15++]]

Social competencies:

1. Understands the need to formulate and provide reliable information and opinion on nuclear power, presenting different points of view - [[K_K02+++]]

Assessment methods of study outcomes

Faculty of Electrical Engineering

Continuous evaluation in the classroom. Skill and competence by conducting discussions on current issues in the field of nuclear energy.

Credit on the basis of a written paper consisting of answers to 10 questions and 3 questions test problem with range of topics covering topics classes.

Course description

The state of development of nuclear power in the world. Classification of nuclear reactors. Generation of nuclear power reactors. The basic types of nuclear reactors and their safety features. Construction, concept and basic technological systems of nuclear reactors, fuel elements and structure of the core. Operating parameters of the reactors. Equipment and auxiliary systems. Nuclear safety issues - the importance of nuclear safety and security of the entire nuclear energy. The development of the nuclear power industry.

Basic bibliography:

- 1. Celiński Z., Strupczewski A., Podstawy energetyki jądrowej, WNT, 1984
- 2. Ackermann G., Eksploatacja elektrowni jądrowych, WNT
- 3. Paska J., Elektrownie jądrowe, Oficyna Wydawnicza Politechniki Warszawskiej, 1990
- 4. Celiński Z., Energetyka jądrowa. PWN. 1991
- 5. Kubowski J.: Nowoczesne elektrownie jądrowe. Warszawa: WNT 2010

Additional bibliography:

- 1. Lech M., Kierunki rozwoju elektrowni jądrowych, Oficyna Wydawnicza Politechniki Wrocławskiej, 1997
- 2. Jezierski G., Energia jądrowa wczoraj i dziś, WNT, 2005
- 3. Hrynkiewicz A., Energia wyzwanie XXI wieku. Wydawnictwo Uniwersytetu Jagiellońskiego. 2002.

Result of average student's workload

Activity	Time (working hours)
1. participation in lectures	15
2. exam preparation	10
3. presence on the exam	3
4. the consultation of lectures	3

Student's workload

Source of workload	hours	ECTS
Total workload	31	1
Contact hours	21	1
Practical activities	0	0